Les auteurs remercient MM les Professeurs J. Toussaint et A. Denoël pour l'intérêt qu'ils ont porté à ce travail.

Références

- AHMED, F. R., HALL, S. R., PIPPY, M. E. & HUBER, C. P. (1967). NRC Crystallographic Programs for the IBM 360 System, National Research Council, Ottawa, Canada.
- CRUICKSHANK, D. W. J. (1961). Computing Methods and the Phase Problem in X-ray Crystal Analysis, edité par R.

PEPINSKY, J. M. ROBERTSON & J. C. SPEAKMAN. Oxford: Pergamon Press.

- Declerco, J. P., Germain, G., Main, P. & Woolfson, M. M. (1973). Acta Cryst. A29, 231–234.
- HANSON, H. P., HERMAN, F., LEA, J. D. & SKILLMAN, S. (1964). Acta Cryst. 17, 1040–1044.
- JAMES, M. N. G. & WILLIAMS, G. J. B. (1972). Canad. J. Chem. 50, 2407–2412.
- Косн, М. Н. J. (1974). Acta Cryst. A30, 67-70.
- WENKERT, E. & BRINGI, N. V. (1959). J. Amer. Chem. Soc. 81, 1474–1481.

Acta Cryst. (1977). B33, 1801–1807

La Structure Cristalline et Moléculaire d'un Nouvel Alcaloïde Bisindolique: la Strychnopentamine, $C_{35}H_{43}N_5O$

PAR L. DUPONT, J. LAMOTTE-BRASSEUR, O. DIDEBERG, H. CAMPSTEYN ET M. VERMEIRE

Laboratoire de Cristallographie, Institut de Physique, Université de Liège au Sart Tilman, B-4000 Liège, Belgique

ET L. ANGENOT

Laboratoire de Pharmacognosie, Institut de Pharmacie, Université de Liège, 5 rue Fusch, B-4000 Liège, Belgique

(Reçu le 8 novembre 1976, accepté le 15 novembre 1976)

Strychnopentamine is a bisindolic alkaloid isolated from the leaves of *Strychnos usambarensis* Gilg. The crystals of $C_{35}H_{43}N_5O$ (3.5 H₂O) are tetragonal, space group $P4_12_12$ with a = b = 13.895, c = 36.105 Å. The crystal structure was solved by direct methods and refined to a final conventional *R* value of 8.4% (2125 reflexions). It is the first compound with five amines found in a strychnos: a methylpyrrolidine group is joined to the benzene ring of the corynane part of the molecule. The configuration, determined on the basis of biogenetic arguments, is 3*S*, 4*R*, 15*S*, 17*S*, 20*R*, 72*R*; C(72) being the first atom of the pyrrolidine group. Compound and water molecules are linked together by seven non-equivalent hydrogen bonds.

Introduction

La strychnopentamine $C_{35}H_{43}N_5O$ est un alcaloïde phénolique isolé des feuilles du *Strychnos usambarensis*. La spectrométrie de masse à haute résolution ayant montré qu'il s'agissait d'un nouveau produit dont la structure serait difficilement établie par les techniques spectrales classiques, la présente étude cristallographique fut envisagée. La configuration absolue du composé n'a pas été déterminée par rayons X mais a pu être déduite sur base d'arguments biogénétiques. Deux isomères de ce nouvel alcaloïde ont été également isolés à partir du même lot de feuilles de *Strychnos usambarensis*.

Partie expérimentale

L'alcaloïde purifié par chromatographie préparative au silica gel a cristallisé au cours de l'évaporation lente d'une solution éthanolique placée au réfrigérateur. On a obtenu ainsi des cristaux hydratés contenant 3,5 H_2O par molécule de strychnopentamine, sans trace d'éthanol; l'oxygène d'une des molécules d'eau [O(82)] se trouve en position particulière dans la maille, sur un axe binaire.

Les principales données cristallographiques et physiques sont données dans le Tableau 1. Le Tableau 2 fournit la liste des principaux programmes utilisés pour les calculs. La solution de *MULTAN* correspondant au Tableau 1. Données physiques et cristallographiques

$C_{35}H_{43}N_{5}O(3,5H_{2}O)$	F(000) = 2648
P4,2,2	$d_{\rm c} = 1,16 {\rm ~g~cm^{-3}}$
a = b = 13,895 (3) Å	$\lambda(Cu K\alpha) = 1,5418 \text{ \AA}$
c = 36,105(5)	$V = 6970.8 \text{ Å}^3$
Z = 8	$\mu = 6,27 \text{ cm}^{-1}$
	$M_r = 549,76(+63,05)$

Dimensions de l'échantillon: $0,3 \times 0, 3 \times 0, 3$ mm

Nombre de réflexions mesurées: 2572

Nombre de réflexions considérées comme observées $[l > 2\sigma(l)]$: 2200

Corrections de Lorentz et de polarisation: oui Corrections d'absorption: non

meilleur critère COMBINED FOM a fourni les positions de 36 atomes non-hydrogène. Les atomes restant ont été obtenus par synthèse $(F_o - F_c)$. Les positions des H introduits dans le calcul des facteurs de structure correspondent à des valeurs calculées. Le processus suivi lors de l'affinement est repris dans le Tableau 3.* Les atomes C(71), C(73), C(74), C(75) et

* La liste des facteurs de structure a été déposée au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 32331: 19 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, Angleterre.

Tableau 2. Principaux programmes utilisés

- Réduction des données: *DATRED*: version dérivée d'un programme de Main (1970)
- Méthode directe: *MULTAN*: Declercq, Germain, Main & Woolfson (1973), Koch (1974)
- Fourier: FFT: (fast Fourier transform)
- Calcul des facteurs de structure et affinements par moindres carrés (approximation des blocs diagonaux): NRC-10: Ahmed, Hall, Pippy & Saunderson (1967)
- Affinement avec la matric entière: SFLS: Prewitt (1967)
- Calcul des positions des H: COOR (programme local)

Description de la structure

- longueurs et angles: NRC-12: Ahmed et al. (1967)
- plans moyens: NRC-22: Ahmed et al. (1967)
- angles de torsion: TORS (programme local)
- représentation de la molécule et de la structure: ORTEP II: Johnson (1971)

Fig. 1. Formule chimique de la strychnopentamine et numérotation des atomes.

N(71) ainsi que les atomes O(80) et O(83) de deux molécules de solvant ont été affinés uniquement avec des facteurs de température isotrope, à cause de la valeur trop élevée (>10) de leur facteur *B*. La dernière synthèse-différence ($F_o - F_c$) n'a pas montré les positions des H des molécules de solvant; mais le réseau des liaisons H nous a permis de proposer un modèle pour les positions de ces atomes: celui-ci est donné plus loin. Au cours de l'affinement, l'utilisation de la matrice entière pendant deux cycles a permis d'assurer la convergence du processus, alors qu'avec l'approximation des blocs diagonaux, les positions des atomes C(71) à O(83) cités plus haut, divergeaient. La formule chimique de la strychnopentamine et la numérotation des atomes sont données sur la Fig. 1.

Description de la structure

Les coordonnées et paramètres d'agitation thermique sont repris dans les Tableaux 4 et 5; les angles et longueurs des liaisons, sur les Figs. 2 et 3.

La première remarque que l'on peut faire est la présence, observée pour la première fois dans le strychnos,

Nombre de

Туре	Atomes	introduits	Facteurs de te	mpérature	Pondération	réflexions dans le		
d'affinement*	non H	н	non H	Н	w	moindre carré	<i>R</i> †	R_w
BD	36	0	isotrope		1,0	2200	0,360	
BD	44	0	isotrope		1,0	2200	0,220	
BD	45	0	isotrope	_	1,0	2200	0,135	_
ME	45	40 (fixes)	isotrope	B = 3,0	1,0	2200	0,114	_
BD	45	40 (fixes)	anisotrope sauf C(71) C(73), C(74) C(75), N(71) O(80), O(83)	<i>B</i> = 3,0	Cruickshank (1961)	2125	0,084	0,12

Tableau 3. Processus suivi pour l'affinement

* BD: blocs diagonaux, ME: matrice entière. † $R = \Sigma |F_o - F_c|/\Sigma |F_o|, R_w = |\Sigma w(F_o - F_c)^2 / \Sigma w F_o^2|^{1/2}$. d'une cinquième amine, sous forme d'un noyau méthylpyrrolidine, greffée sur le cycle benzénique de la partie corynane de la molécule. La strychnopentamine peut être comparée utilement à la strychnofoline (Dideberg, Lamotte-Brasseur, Dupont, Campsteyn, Vermeire & Angenot, 1977) pour les parties indoliques, à l'isocinchophyllamine, isolé des feuilles de *Cinchona ledgeriana* (Guilhem, 1974) et aussi à l'usambarensine (Dideberg, Dupont & Angenot, 1975). Les distances et les angles des liaisons intermoléculaires sont conformes aux valeurs attendues, excepté l'une ou l'autre valeur dans le cycle méthylpyrrolidine: l'imprécision des coordonnées et les valeurs élevées du facteur *B* obtenues pour les atomes C(71), N(71), C(73), C(74) et C(75) sont le signe d'un certain 'désordre' au niveau de ce groupement qui est d'ailleurs peu lié dans le cristal [seul C(71) fait des liaisons de van der Waals avec des atomes de molécules voisines]. Les valeurs des angles de torsion (Fig. 4) et les projections de Newman autour des centres d'asymétrie (Fig. 5) correspondent à la con-

Tableau 4. Coordonnées et paramètres d'agitation thermique des atomes non-hydrogène ($\times 10^4$)

Le facteur d'agitation thermique anisotrope est égal à: exp $[-(B_{11}h^2 + B_{22}k^2 + B_{33}l^2 + B_{23}kl + B_{13}hl + B_{12}hk)]$.

	X	У	Ζ	<i>B</i> ₁₁	B 22	B ₃₃	B ₂₃	B ₁₃	<i>B</i> ₁₂
N(1)	11057(4)	6590 (4)	2992 (2)	77 (4)	63 (3)	11(1)	-1 (2)	6 (2)	13 (6)
C(2)	11078 (5)	7558 (5)	2915(2)	69 (4)	62(4)	11(1)	2 (3)	-2(3)	15(7)
C(3)	10825 (5)	8328 (5)	3193 (2)	70 (4)	52 (4)	11(1)	4 (2)	6(3)	29 (6)
N(4)	10674 (4)	9234 (4)	2985 (1)	71 (3)	55 (3)	11(1)	8 (2)	4 (2)	13 (5)
C(5)	11484 (6)	9428 (5)	2734 (2)	83 (5)	69 (4)	12(1)	16(3)	3 (3)	-6 (8)
C(6)	11475 (6)	8717(6)	2407 (2)	91 (5)	84 (5)	13 (1)	8 (3)	8 (3)	6 (9)
C(7)	11321 (5)	7728 (5)	2562 (2)	87 (5)	74 (4)	11(1)	-1(3)	3 (3)	- ∸9 (8)
C(8)	11474 (6)	6813 (6)	2390 (2)	82 (5)	84 (5)	12 (1)	10(3)	17 (3)	21 (8)
C(9)	11686 (7)	6474 (7)	2029 (2)	116(7)	100 (7)	15(1)	-5 (4)	18 (4)	21 (11)
C(10)	11724 (8)	5504 (8)	1961 (2)	127 (7)	115 (8)	14 (1)	-14 (4)	3 (4)	15 (12)
C(11)	11569(7)	4868 (7)	2242 (3)	96 (6)	102 (6)	18(1)	-30 (4)	-13 (4)	41 (10)
C(12)	11361 (6)	5122 (6)	2610(2)	79 (5)	76 (5)	15(1)	-9(3)	-14(3)	36 (8)
C(13)	11294(6)	6123 (5)	2671 (2)	76 (5)	73 (4)	14(1)	0 (3)	0(3)	22 (8)
C(14)	9922 (5)	8099 (4)	3418 (2)	64 (4)	52(3)	10(1)	5 (2)	3 (2)	9 (6)
C(15)	9701 (5)	8909 (5)	3700 (2)	79 (5)	59 (4)	11(1)	2(3)	-3(3)	-8(7)
C(16)	8729(6)	8780(5)	3905 (2)	79 (5)	70 (4)	12(1)	2(3)	12(3)	2 (7)
C(17)	8588(5)	7901 (5)	4155 (2)	88 (5)	60(4)	10(1)	-1(2)	11(3)	-17(7)
C(18)	9041(8)	11411(/)	3750(3)	154 (9)	93(6)	15(1)	-8(4)	17(5)	10(13)
C(19)	9657(6)	10/35(5)	3/63(2)	118 (7)	56 (4)	15(1)	-2(3)	1/(4)	7 (9)
C(20)	9686(5)	9887(5)	3499 (2)	87 (5)	58 (4)	12(1)	11(3)	-5(3)	0(7)
$\mathcal{C}(21)$	10558(5)	10027(5)	3252(2)	83(5)	54 (4)	12(1)	9(3)	-1(3)	0(7)
N(51)	/801 (4)	0807(4)	3040 (1)	72 (4)	09(3)	10(1)	7(2)	3(2)	2(0)
U(52)	8406 (5)	6954 (5)	3965 (2)	70 (4) 02 (4)	74 (4)	9(1)	0(3)	0(3)	2(7)
$\Gamma(54)$	9420(3)	7739(3)	4418(2)	92 (4)	84 (4) 07 (6)	11(1) 12(1)	2(3)	-2(3)	-27(7)
C(54)	9348(7)	8393 (7) 6904 (6)	4003 (2)	107(6)	97(0)	13(1)	-3(4)	1(4)	-01(10)
C(55)	9200(6)	0894 (0) 5960 (6)	4000(2)	107(0)	97 (5)	10(1)	13(3)	-3(3)	-47(9)
C(50)	9224(0)	5900 (0)	4432 (2)	96 (J) 76 (A)	72 (1)	11(1)	14(3) 13(3)	-3(3)	-08(9)
C(58)	8268(5)	5374 (5)	3840(2)	76 (4)	68 (4)	11(1)	6(3)	1(3)	-5(7)
C(50)	8258(7)	4373 (6)	3834(2)	117 (6)	74 (5)	15(1)	4(3)	-18(4)	-29(9)
C(60)	7760(8)	3916(7)	3545(3)	146 (9)	80 (6)	13(1) 17(1)	-3(4)	-24(5)	-23(12)
C(61)	7287 (8)	4479(7)	3270(2)	136 (8)	98 (6)	14(1)	0(4)	-20(4)	-19(12)
C(62)	7301(6)	5467 (6)	3270(2) 3271(2)	93 (6)	98 (6)	11(1)	-5(3)	-7(3)	10(10)
C(63)	7780(5)	5904 (5)	3565 (2)	79 (5)	74(5)	12(1)	1(3)	1(3)	-24(8)
C(72)	11219(7)	4431 (5)	2921(2)	115(7)	54 (4)	16(1)	1(3)	-20(4)	45 (8)
O(11)	11632 (5)	3884 (5)	2159(2)	137(5)	104 (4)	20(1)	-26(3)	-24(4)	62 (8)
O(81)	3650(5)	2054 (4)	8278 (2)	106 (4)	112 (5)	18(1)	-7(3)	5 (3)	24(7)
O(82)	988 (4)	988 (4)	7500 (0)	81 (4)	81 (4)	14 (1)	-1(4)	1 (4)	-12 (7)
	X	У	Ζ	В		x	У	Z	В
N(71)	11902(8)	3588 (8)	2876(3)	12,4 Ų	C(75)	11563 (13)	2932 (12)	3110 (4)	14,2 Ų
C(71)	12891 (12)	3850(13)	2925 (4)	14,5	O(80)	4192 (6)	654 (6)	8798 (2)	11,0
C(73)	10246 (10)	3935 (10)	2955 (3)	11,6	O(83)	7939 (8)	4042 (8)	9788 (3)	14,8
C(74)	10577 (10)	2968 (9)	3150(3)	11.1					

Fig. 2. Distances interatomiques. Les écarts-type sont de l'ordre de 0,01 Å.

Fig. 3. Angles des liaisons covalentes. Les écarts-type sont compris entre 0,6 et 0,8°.

figuration stéréochimique 3S, 4R, 15S, 17S, 20R et 72R, qui est la plus probable si on suit la règle proposée par Wenkert & Bringi (1959), à savoir, H(15) en position α , suivant des arguments biogénétiques.

C'est la même configuration absolue que la strychnofoline (3S, 4R, 7S, 15S, 17S, 20R) et que

l'isocinchophyllamine (3S, 4R, 15S, 17S, 20R); signalons pour cette dernière qu'il faut changer les signes de tous les angles de torsion dans la Fig. 6 de la publication de Guilhem (1974) pour qu'ils correspondent à la configuration absolue qui y est effectivement décrite. Rappelons que la configuration de l'usambaren-

Fig. 4. Angles (°) de torsion des cycles.

Tableau 5. Coordonnées des atomes H ($\times 10^3$)

Les atomes H liés à C(71) dont les positions n'ont pu être fixées sans ambiguïté et ceux des molécules de solvant ne figurent pas dans cette liste.

	Х	y	2
H(N1)	1088	628	326
H(3)	1143	841	339
H(5A)	1144	1017	263
H(5B)	1216	935	289
H(6A)	1089	891	221
H(6B)	1216	875	225
H(9)	1183	701	180
H(10)	1192	525	168
H(14A)	931	806	322
H(14B)	999	743	356
H(15)	1024	890	392
H(16A)	820	878	369
H(16B)	866	944	407
H(17)	800	807	434
H(18A)	905	1201	394
H(18B)	850	1139	353
H(19)	1022	1079	399
H(20)	906	992	331
H(21A)	1052	1070	310
H(21 <i>B</i>)	1122	1005	343
H(N51)	758	744	348
H(54A)	888	880	467
H(54 <i>B</i>)	984	838	492
H(54C)	1001	911	452
H(55A)	846	700	477
H(55B)	969	689	489
H(56A)	893	537	461
H(56B)	998	578	438
H(59)	864	397	405
H(60)	774	313	351
H(61)	693	411	303
H(62)	692	587	305
H(72)	1136	487	319
H(73A)	983	385	270
H(73B)	967	433	313
H(74A)	1014	241	301
H(74 <i>B</i>)	1027	299	343
H(75A)	1168	214	304
H(75B)	1182	290	341
H(O11)	1147	358	237

sine est 3S, 4S, 15S: la jonction entre les cycles C et D y est donc du type 3α cis, alors que pour les trois composés précédents elle est 3α trans.

La Fig. 6 montre une vue stéréoscopique de la molécule. Les angles entre quelques plans moyens sont donnés dans le Tableau 6. Les distances entre les

Fig. 5. Projections de Newman autour de (a) C(2)-C(7), (b) C(15)-C(20), (c) C(3)-N(4), (d) C(17)-N(54) et (e) C(12)-C(72). Angles en degrés.

Tableau 6. Angles (°) entre quelques plans moyens

Les conventions pour noter les cycles sont données dans la Fig. 1.

A-B	2,8	E-F	4.5
B-C	7,1	F-G	2.3
C-D	15,8	ABC-EFG	131,9
ABC-D	21,0	D - C(15)C(16)C(17)	38.5
A-H	68,6	EFG-C(15)C(16)C(17)	84,5
D–EFG	111,1	D - C(18)C(19)C(20)	97.5
ARC_H	65.2		

atomes N et le plan formé par les trois atomes (non H) qui leur sont liés sont respectivement: pour N(4) 0,47, pour N(54) 0,51 et N(71) 0,44 Å.

Les distances intermoléculaires les plus courtes sont données dans le Tableau 7. On remarque la présence d'un grand nombre de liaisons hydrogène (sept non équivalentes) dont le schéma est présenté sur la Fig. 7. Une synthèse $(F_o - F_c)$ en fin d'affinement n'a pas permis de fixer les coordonnées des atomes H des molécules d'eau, cependant la disposition des atomes O et N permet de proposer, sans ambiguïté, un modèle qui définit les positions de tous ces atomes H (Fig. 7), sauf deux: seuls un H de O(80) et un H de O(83) ne participent pas à une liaison hydrogène. Il y a en plus, pour assurer la cohésion du cristal, un certain nombre de liaisons de van der Waals.

Fig. 6. Vue stéréoscopique de la molécule.

Fig. 7. Schéma des liaisons hydrogène et positions proposées pour les atomes H. Les positions équivalentes indiquées en indice pour chaque atome correspondent à celles du Tableau 7. Angles en degrés, distances en Å.

Tableau 7. Distances intermoléculaires (< 3,5 Å)

La convention suivante est utilisée: C(18)-C(71) 3/ $\overline{100}$ signifie que C(18) est en position équivalente 1 et C(71) en position 3 translatée d'une maille suivant -x. Les positions équivalentes sont:

(1)	<i>x</i> , <i>y</i> , <i>z</i>	(5) $\frac{1}{2} - y, \frac{1}{2} + x, \frac{1}{4} + z$	+ z
(2)	$-x, -y, \frac{1}{2} + z$	(6) $\frac{1}{2} + y, \frac{1}{2} - x, \frac{3}{4} + z$	+ z
(3)	$\frac{1}{2} + x, \frac{1}{2} - y, \frac{3}{4} - z$	(7) $y, x, -z$	
(4)	$\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{4} - z$	(8) $-y, -x, \frac{1}{2}-z.$	

Les liaisons hydrogène sont marquées d'une astérisque.

C(6)-O(82)	$2/11\overline{1} \equiv 7/001$	3,463 (12)
C(7)–O(83)	5/111	3,445 (13)
C(8)-O(83)	5/111	3,417 (14)
C(18)–C(71)	3/100	3,399 (17)
C(55)-O(81)	4/111	3,387 (11)
C(56)-O(81)	4/111	3,424 (11)
C(57)-O(80)	4/111	3,342 (11)
C(59)–O(11)	5/110	3,406 (11)
C(71)–O(11)	8/220	3,389 (18)
C(72)–O(80)	4/111	3,340 (11)
N(1)-O(80)*	4/111	2,895 (9)
N(4)-O(82)*	2/111≡7/001	2,915 (9)
N(51)-O(81)*	2/111	2,901 (8)
N(54)-O(81)*	4/111	2,933 (9)
O(80)-O(81)*	1/000	2,807 (9)
O(81)-O(83)*	3/111	2,733 (12)
O(82)O(83)*	3/111	2,817 (12)
O(82)-O(83)*	6/Ī1Ī	2,817 (12)

Les auteurs remercient les Professeurs J. Toussaint et A. Denoël pour l'intérêt qu'ils ont porté à ce travail.

Références

- AHMED, F. R., HALL, S. R., PIPPY, M. E. & SAUNDERSON, C. P. (1967). NRC Crystallographic Programs for the IBM 360 System, National Research Council, Ottawa, Canada.
- CRUICKSHANK, D. W. J. (1961). Computing Methods and the Phase Problem in X-ray Crystal Analysis, edité par R. PEPINSKY, J. M. ROBERTSON & J. C. SPEAKMAN. Oxford: Pergamon Press.
- DECLERCQ, J. P., GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1973). Acta Cryst. A29, 231–234.
- DIDEBERG, O., DUPONT, L. & ANGENOT, L. (1975). Acta Cryst. B31, 1571–1575.
- DIDEBERG, O., LAMOTTE-BRASSEUR, J., DUPONT, L., CAMPSTEYN, H., VERMEIRE, M. & ANGENOT, L. (1977). Acta Cryst. B33, 1796–1801.
- GUILHEM, J. (1974). Acta Cryst. B30, 742-747.
- JOHNSON, C. K. (1971). ORTEP II. Oak Ridge National Laboratory Report ORNL-3794, revised.
- Косн, М. Н. J. (1974). Acta Cryst. A30, 67-70.
- MAIN, P. (1970). Program for the reduction of diffractometer data, Univ. of York, England.
- PREWITT, C. T. (1967). SFLS program, State Univ. of New York, Stony Brook, Long Island, New York 11790, USA.
- WENKERT, E. & BRINGI, N. V. (1959). J. Amer. Chem. Soc. 81, 1474–1481.

Acta Cryst. (1977). B33, 1807-1811

The Crystal Structure of Stenhuggarite

By Alessandro Coda,* Alberto Dal Negro, Cesare Sabelli† and Vittorio Tazzoli

Centro di Studio per la Cristallografia Strutturale del Consiglio Nazionale delle Ricerche, Istituto di Mineralogia dell'Università, Via Bassi 4, 27100 Pavia, Italy

(Received 19 October 1976; accepted 20 November 1976)

Stenhuggarite, CaFeSbAs₂O₇, is tetragonal, with $a = 16 \cdot 144$ (3), $c = 10 \cdot 706$ (2) Å, space group $I4_1/a$, Z = 16. The structure was refined to R = 0.041 for 1446 independent reflexions. Ca displays a coordination polyhedron halfway between a cube and a square antiprism. The other coordination polyhedra are (ψ means that a vertex is occupied by an electron lone pair): Sb, ψ -trigonal bipyramid; As, ψ -tetrahedron; Fe, trigonal bipyramid; their bond lengths and angles, and their distortions from regularity are in accordance with the valence shell electron pair repulsion model (VSEPR). Two kinds of anion units are present, not sharing O atoms between them: one, $(As_4O_8)^{-4}$, consists of eight-membered rings; the other, $(AsSbO_5)^{-4}$, is formed of helices -O-Sb-O- with $-OAsO_2$ side groups. This study shows that the formula is Fe^{III}Ca[As^{III}O₂/As^{III}Sb^{III}O₅].

Introduction

Stenhuggarite is a rare mineral found in an association, filling small pockets in haematite ore. According to Moore (1970), an electron microprobe analysis gave the composition $Ca_{1.00}Fe_{0.98}Sb_{1.00}As_{2.06}O_{7.76}$ which suggests the chemical formula $CaFe^{II}Sb^{V}As_{2}^{III}O_{v}$ (y = 7.5), but also $CaFe^{III}Sb^{III}As_{2}^{III}O_{v}$ (y = 7) is possible, since close agreement with analysis cannot be expected.

This study has been undertaken to establish the correct valence states and to contribute to the crystal chemistry of the natural arsenites.

^{*} Address: Istituto di Cristallografia dell'Università, Via Bassi 4, 27100 Pavia, Italy.

[†] Address: Istituto di Mineralogia dell'Università, Via Lamarmora 4, 50121 Firenze, Italy.